Chem. Ber. 119, 2631-2646 (1986)

Lichtinduzierte reversible Reaktionen: Synthesen und Eigenschaften photochromer 1,1-Dicyan-1,8a-dihydroazulene und thermochromer 8-(2,2-Dicyanvinyl)heptafulvene¹⁾

Jörg Daub^{*a}, Sebastian Gierisch^a, Ulrich Klement^a, Thomas Knöchel^a, Gerhard Maas^b und Ulrich Seitz^a

Institut für Organische Chemie der Universität Regensburg^a, Universitätsstraße 32, D-8400 Regensburg, und

Fachbereich Chemie der Universität Kaiserslautern^{b)}, D-6750 Kaiserslautern

Eingegangen am 20. Februar 1986

1,1-Dicyan-2-aryl-1,8a-dihydroazulene 6(a-g) werden ausgehend von 8-Methoxyheptafulven und Benzylidenmalonodinitrilen über Tetrahydroazulene 5 dargestellt. Die Dihydroazulene 6 lagern durch sichtbares Licht in 8-(2,2-Dicyan-1-arylvinyl)heptafulvene 7 um. Die Rückreaktion $7 \rightarrow 6$ erfolgt thermisch. Die chemische Stabilität und damit die Zahl der reversiblen Cyclen des oszillierenden Gleichgewichts $6 \rightleftharpoons 7$ hängt von den Substituenten der Arylreste ab. Die *p*-Methoxyverbindungen 6f, 7f haben im Vergleich zu den *p*-Nitroverbindungen höhere photochemische Stabilität. Die Struktureigenschaften von 6 und 7 wurden durch Kristallstrukturanalysen von 6c und 7f gesichert. Spektroskopische Daten von 6, 7 sind angegeben. Erste Ergebnisse über die Umwandlung $6 \rightleftharpoons 7$ im Festzustand liegen vor.

Light-Induced and Reversible Transformations: Syntheses and Properties of Photochromic 1,1-Dicyano-1,8a-dihydroazulenes and Thermochromic 8-(2,2-Dicyanovinyl)heptafulvenes¹⁾

1,1-Dicyano-2-aryl-1,8a-dihydroazulenes 6(a-g) are prepared in a two-step synthesis starting from 8-methoxyheptafulvene and benzylidenemalononitriles via the tetrahydroazulenes 5. The compounds 6(a-h) rearrange to 8-(2,2-dicyano-1-arylvinyl)heptafulvenes 7(a-h) by irradiation with visible light. The back reaction of 7 to 6 occurs under thermal conditions. Donor-substituted compounds indicate higher long term stability of the equilibrium $6 \rightleftharpoons 7$ ($6f \rightleftharpoons 7f > 44$ h). Spectroscopic data of 6 and 7 are given. The molecular structures of the *p*-bromophenyl derivative 6c and of the *p*-methoxyhenyl derivative 7f are revealed through crystallography. Some results for the rearrangements $6 \rightleftharpoons 7$ in the solid state are given.

1,8a-Dihydroazulen (1) erweist sich als chemisch sensibler molekularer Baustein. Das Dimethylderivat 2, ein Trinorsesquiterpen, wurde in optisch aktiver Form zusammen mit dem Indenaldehyd 3 und 1,4-Dimethylazulen (4) aus Kulturen von Lebermoos (*Calypogeia granulata* Inoue) isoliert^{2,3}. Die Bildung von 4 weist auf die leichte Dehydrierung von 2 hin. Andere Eigenschaften hat die Dicyanverbindung 6. Diese ist photochrom, sichtbares Licht bewirkt eine Umlagerung zu einer tiefroten Substanz, für die die Struktur des Heptafulvens 7 vorgeschlagen wurde¹⁾. Diese photochemische Umwandlung weist auf die Labilität der C-1-C-8a-Bindung in 6 hin, das eine latente Tropylium-Dicyanalkylid-Struktur enthält⁴⁾. 7 ist ein durch Akzeptorgruppen stabilisiertes Heptafulven⁵⁾ und sollte chemisch recht stabil sein⁶⁾. Dennoch wird durch Erwärmen von 7 das Dihydroazulen 6 zurückgebildet¹⁾. Aufgrund dieser Eigenschaften liegen potentielle Anwendungen des Verbindungspaares $6 \rightleftharpoons 7$ für die Informationsspeicherung nahe⁷⁾.

Im folgenden wird über die Synthese, über einige physikalische, insbesondere spektroskopische Eigenschaften der Dihydroazulene 6 und der Vinylheptafulvene 7 sowie über qualitative Aspekte der Umlagerungen $6 \rightleftharpoons 7$ berichtet⁸).

Synthese und Struktureigenschaften der Dihydroazulene 6 und Vinylheptafulvene 7

Die Dihydroazulene 6 werden aus den jeweiligen Tetrahydroazulenen 5 (als Diastereomerengemisch eingesetzt) durch Abspaltung von Methanol hergestellt⁹). Die Umsetzungen müssen wegen der Lichtempfindlichkeit von 6 im Dunkeln durchgeführt werden. Als geeignetes Reagenz für die Eliminierung erwies sich Phosphorpentoxid und Dichlormethan oder Benzol als Lösungsmittel. Die Ausbeuten sind von den Substituenten in der Arylgruppe abhängig. Mit hoher Ausbeute verläuft die Synthese von 6a, dagegen konnte 6g nur in sehr geringer Ausbeute erhalten werden. Die *p*-Aminoverbindung 6h wurde ausgehend von 6a durch Reduktion mit $Fe(OH)_2$ hergestellt. Um 6h rein zu erhalten, wurde das bei der Reduktion entstandene Reaktionsgemisch bestrahlt und das entstandene Vinylheptafulven 7h durch Chromatographie gereinigt. Die thermische Rückreaktion ergab dann reines Dihydroazulen 6h.

Bei der Bestrahlung der Dihydroazulene 6 mit Sonnenlicht oder einer Lampe OSRAM HWLS, 500 W, lagern sich die gelben Verbindungen in rote Photoprodukte mit der Struktur 7 um. Der Verlauf der Reaktion kann am Auftreten der langwelligen Absorption im Bereich 460-490 nm oder intensitätsstarker Nitrilbanden im IR-Spektrum verfolgt werden. Die Verbindungen 7 konnten meist in kristallisierter Form erhalten werden. Dafür wurden die Bestrahlungen in verdünnten Lösungen durchgeführt, die Lösungsmittel unter fortwährendem Belichten i. Vak. entfernt und die Reaktionsprodukte mit niedrigsiedenden Lösungsmitteln chromatographiert. Auf diese Weise wurden 7c, e, f und h rein erhalten; Kristalle von 7d enthielten noch etwas Dihydroazulen 6d. Bei 7a und b führte ein einfacherer Weg zum Ziel: Beim Bestrahlen gesättigter Lösungen von **6a** bzw. **b** in Hexan (Lampe oder Tageslicht) kristallisierten die in Hexan schlechter löslichen **7a, b** in reiner Form aus.

Die molekularen Strukturen von 6 und 7 ergeben sich aus den Kristallstrukturanalysen der *p*-Bromphenyl-Verbindung 6c und *p*-Methoxyphenyl-Verbindung 7f (Abb. 1). Der Dihydroazulenstrukturteil von 6c weist die für diese Verbindungsklasse typische Boot-Konformation des Siebenrings mit $\alpha = 53.2^{\circ}$ und $\beta = 26.4^{\circ}$ auf ¹⁰⁻¹². Die an dem Reaktionsgeschehen $6 \rightleftharpoons 7$ vorwiegend beteiligte Bin-

Abb. 1. ORTEP-Plots von 6c und 7f. Die Größe der Schwingungsellipsoide repräsentiert eine 50proz. Wahrscheinlichkeit

dung C-1–C-8a in **6** ist mit 1.568(6)Å etwas kürzer als C-1–C-1' in dem Cyclopropenderivat **8** (1.588(4)Å). In **8** wird C-1–C-1' leicht heterolytisch gespalten^{4,13)}. Der photochemisch induzierten Öffnung des Fünfrings in **6** – mit der Spaltung der C-1–C-8a-Bindung – schließen sich, wie die Kristallstrukturanalyse zeigt, weitere Strukturänderungen an. Im Vinylheptafulven 7 besitzt der Butadienstrukturteil C-7–C-8–C-9–C-10 die *s-trans*-Anordnung, wobei die beiden Ethyleneinheiten um die zentrale C–C-Einfachbindung verdrillt sind (Diederwinkel C-7–C-8–C-9–C-10 = -164.5°). Der Siebenring in 7**f** ist nahezu planar. Sowohl in **6c** als auch in 7**f** ist der Phenylring aus der durch die benachbarte Doppelbindung C-2–C-3 in **6c** bzw. C-9–C-10 in 7**f** definierten Ebene herausgedreht.

Die Längen der C-C-Bindungen in den Siebenringen von 6c und 7f weisen deutliche Alternanz auf. Die mittlere Bindungslänge für die C-C-Einfachbindung in 7f liegt bei 1.412Å und für die C-C-Doppelbindung bei 1.337Å. Die exocyclische Doppelbindung C-7-C-8 ist mit 1.356Å deutlich kürzer als die vergleichbare Bindung in 8,8-Dicyanheptafulven (9) $(1.422 \text{ Å})^{14}$.

Die ¹H-NMR- und Elektronenspektren von 6 und 7 sind ebenfalls in Übereinstimmung mit den spektroskopischen Daten vergleichbarer Verbindungen^{5,15–21)}.

6, 7	R	Dihydroazulene 6	Vinylheptafulvene 7		
a	NO ₂	385 (4.2)	483 (4.45)		
Ь	CO ₂ Me	365 (4.2)	476 (4.4)		
с	Br	358 (4.1)	474 (4.3)		
d	Н	354 (4.1)	471 (4.4)		
е	Me	355 (4.3)	469 (4.4)		
f	OMe	365 (4.4)	467 (4.5)		
g	NMe ₂	406 (4.5)	460 (4.5)		
ĥ	NH ₂	388 (4.4)	456 (4.5)		

Tab. 1. Längstwellige Banden [λ_{max} (log ϵ)] in nm im UV/VIS-Spektrum von 6 und 7

Ein wesentliches Kriterium für die Anwendung photochromer Verbindungen sind die Absolutwerte und die Energieunterschiede der jeweils längstwelligen Absorptionsbanden. Für das Verbindungspaar 6, 7 ergibt sich, hervorgerufen durch ihre unterschiedlichen topologischen Strukturen, eine substanzklassenspezifische Substituentenabhängigkeit (Tab. 1). In den Dihydroazulenen 6 liegt ein Chromophor mit alternierendem π -Gerüst vor. Die längstwellige Bande in 6 erfährt eine bathochrome Verschiebung sowohl durch Donor- als auch durch Akzeptorsubstituenten. Hingegen nimmt λ_{max} in den "nichtalternierenden" Verbindungen 7 mit steigender Akzeptorstärke der Substituenten zu. Deshalb haben die jeweils längstwelligen Absorptionsbanden bei den unsubstituierten Verbindungen 6d und 7d maximale Wellenlängendifferenz und damit auch die größte Energielücke: $\Delta\lambda_{max}$ (6d/7d) = 117 nm (20.0 kcal/mol). Die durch die Molekülstruktur bedingten unterschiedlichen Elektronenverteilungen in 6 und 7 werden durch die Lösungsmittelabhängigkeit der UV/VIS-Spektren bestätigt. Im Gegensatz zu 6c weist 7c eine deutlich höhere positive Solvatochromie auf²²⁾.

Lösungsmittel	$E_{\rm T}$ (kcal/mol) ²²⁾	6c	7c
Ethanol	51.9	360	481
Acetonitril	46.0	358	474
Benzol	34.5	361	466
Tetrachlormethan	32.5	359	461
n-Hexan	30.9	354	447

Tab. 2. Lösungsmittelabhängigkeit der UV/VIS-Spektren von 6c und 7c. λ_{max} -Werte (in nm) für die längstwellige Bande

Photochromie-Thermochromie

Die photochemischen Umwandlungen $6 \rightleftharpoons 7$ wurden entweder durch direkte Bestrahlung mit Sonnenlicht oder mit einer Lampe OSRAM HWLS 500 W durchgeführt. Geeignete Methoden für die Detektion sind: a) UV/VIS-Spektroskopie¹⁾, b) IR-Spektroskopie, c) ¹H-NMR-Spektroskopie, d) Circulardichroismus¹⁾. Für die letztere Messung wurde eine Probe von **6f** durch Niederdruckflüssigkeitschromatographie an gequollener Triacetylcellulose aufgetrennt (Laufmittel Ethanol 96%)^{1,23)}. Als erste Fraktion wurde (+)-**6f** eluiert. Dessen CD-Spektrum weist bei 365 nm einen positiven und bei 275 nm einen negativen $\Delta \varepsilon$ -Wert auf. Zum Vergleich hat (8aS)-(+)-**2** bei 314.0 nm ebenfalls einen positiven und bei 235 nm einen negativen Cotton-Effekt³, so daß angenommen werden kann, daß (+)-**6f** die gleiche absolute Konfiguration an C-8 hat: (8aS)-(+)-**6f**. Bei Belichtung und damit beim Übergang zum Vinylheptafulven **7** verschwindet der Circulardichroismus.

Nach ausreichend langer Bestrahlung zeigen ¹H-NMR- und UV/VIS-Spektren von 6c-h die vollständige Bildung der jeweiligen Photoprodukte 7c-h. 7b lag nach vierstündiger Bestrahlung im NMR-Röhrchen zu etwa 85% vor. Bei 6a/7awurde das Photogleichgewicht in Acetonitril UV-spektroskopisch zu 57:43 bestimmt.

Wird eine Lösung des bei der Bestrahlung von 6a entstandenen 7a nach der Einstellung des Photogleichgewichts weiter bestrahlt, so kann im UV-Spektrum ein allmähliches Abnehmen der längstwelligen Bande bei 483 nm beobachtet werden. Zugleich tritt bei 315 nm eine neue Bande auf. Nach 24stündiger Bestrahlung ist 7a vollständig umgewandelt. Anders verhalten sich die im Arylrest donorsubstituierten Verbindungen: nach 44 Stunden Bestrahlung war im UV-Spektrum noch keine Veränderung festzustellen. Dies gilt auch für 7g und h. Die Anwesenheit elektronenziehender Gruppen begünstigt demnach die photochemische Zersetzung der Vinylheptafulvene 7. Die Lösungsmittel haben einen großen Einfluß auf die Geschwindigkeit der photochemischen Weiterreaktion: 7c zersetzte sich in CCl₄ etwa doppelt so schnell, in Ethanol und Benzol etwa gleich schnell und in n-Hexan höchstens halb so schnell wie in Acetonitril. Eine neue Bande trat nur in Ethanol auf (320 nm), in den anderen Lösungsmitteln waren Änderungen in den Absorptionen nur unterhalb 280 nm zu beobachten.

Die thermische Rückreaktion $7 \rightarrow 6$ verläuft in allen Fällen vollständig. Bei Raumtemperatur waren bis zum Verschwinden von 71-2 Tage erforderlich (7a, $c = 4.9 \cdot 10^{-5}$ mol/l in CH₃CN, 25°C, 16 h; 7f unter gleichen Bedingungen 3 Tage). Beim Erhitzen einer ethanolischen Lösung von 7 auf 78°C erfolgt der Ringschluß zu 6 in wenigen Sekunden.

Für die chemische Oszillation, d.h. photochemische Umwandlung $6f \rightarrow 7f$ und die thermische Rückreaktion von $7f \rightarrow 6f$, wurde auch nach wiederholtem Oszillieren bei Raumtemperatur über einen Zeitraum von 9 Monaten keine Veränderung der Extinktionswerte gefunden ($c = 2.6 \cdot 10^{-4} \text{ mol/l in CH}_3$ CN in einer dicht verschlossenen 1-mm-Küvette).

Reaktionsverhalten im Festzustand

Die Bestrahlung von Kristallen von 6b-h führt zu einer leichten Rötung an den Kanten; die Kristalle bleiben ansonsten unverändert. Mikrokristalline Substanz nimmt eine orangerote Farbe an. Die Rötung ist thermisch reversibel (95°C), dabei tritt jedoch bei den akzeptorsubstituierten Verbindungen in geringem Maße Zersetzung ein (leichte Braunfärbung). **6a** zeigte im Festzustand keine Photoreaktion.

Verreibungen der Dihydroazulene in Kaliumbromid zeigen eine reversible Rotfärbung, ebenso an Kieselgel adsorbiertes 6. Hier sind viele photochemische Cyclen möglich, jedoch tritt meist innerhalb weniger Wochen vollständige Zersetzung ein. Beim langsamen Erhitzen von kristallisiertem 7e im Schmelzpunktröhrchen ist bei 135°C vollständige Umwandlung in festes, gelbes 6e zu beobachten, das dann durch seinen Schmelzpunkt identifiziert werden kann. Auch die übrigen Vinylheptafulvene 7 zeigen dieses Verhalten (Tab. 3).

Die Umwandlung zu 6 ist nur über die cisoide Geometrie B möglich, 7 liegt aber im Kristall in der sterisch günstigeren transoiden Konformation A vor. Zur Bildung von 7B muß eine Rotation um die C-8–C-9-Bindung stattfinden, die im festen Zustand wegen der Fixierung im Kristallgitter nicht möglich ist. Beim Zusammenbruch des Gitters von 7A am Umwandlungspunkt tritt dann über 7B der Ringschluß zu 6 ein.

7	R	<i>Τ</i> _{Umw.} (°C)	Schmp. 6	7	R	T _{Umw.} (°C)	Schmp. 6
a b c d	NO₂ CO₂Me Br H	115-116 108 132 ≈ 100	145 – 146 152 151 128	e f h	Me OMe NH ₂	135 116 ≈120	151 125 188

Die Differentialthermoanalyse von 7e (Abb. 2 im exp. Teil) bestätigt den exothermen Charakter der Ringschlußreaktion zum thermodynamisch stabileren Dihydroazulen. Der Energiegewinn aus der Umwandlung zu 6 ist wesentlich größer als die aufzuwendende Energie für das Schmelzen von 7 und die Umwandlung in die cisoide Konformation. Die Schmelze der Dihydroazulene ist hellrot; beim Abkühlen kristallisieren wieder gelbe Kristalle aus. Auch aus der Schmelze von 7f, bei dem keine Umwandlung in festes 6f beobachtet werden konnte, kristallisiert 6f.

Zusammenfassung und Ausblick

Welche strukturellen Parameter steuern die Zehnelektronenumlagerungen $6 \rightleftharpoons 7^{24,25}$? Durch entsprechende Änderungen dieser Größen sollten Thermodynamik und Kinetik des Gleichgewichts gezielt geändert werden können. Einige qualitative Ergebnisse:

1. Die Arylgruppe in 6 ist offensichtlich Voraussetzung für eine photochrome Ringöffnung, denn vergleichbare photochemische Reaktionen sind bei Dicyanhydroazulenen ohne die Arylgruppe nicht bekannt.

2. Elektronendonatoren in 4-Position des Arylrings blockieren photochemische Nebenreaktionen, die zur Löschung der Photochromie führen. Die Cyclenzahl in $6 \rightleftharpoons 7$ ist deutlich höher bei den *p*-Methoxyverbindungen **6f**, **7f** im Vergleich zu den *p*-Nitroverbindungen **6a**, **7a**.

3. Zwei Nitrilgruppen an C-1 in 6 sind eine weitere notwendige Voraussetzung für eine photochemische Ringöffnung. Die Verbindungen 10 sind nicht photochrom^{9b)}. Aus diesen Beobachtungen kann geschlossen werden, daß der an-

geregte Zustand von 6 zu einer Zwischenverbindung mit negativ geladenem Dicyanalkylid-Strukturteil und über das π -System delokalisierter positiver Ladung führt.

4. Die thermische Rückreaktion wird durch Elektronenakzeptoren im Arylrest, beispielsweise bei $7a \rightarrow 6a$, beschleunigt. Daraus folgt, daß bei $6a \rightleftharpoons 7a$ die Differenz der freien Enthalpie ΔG° größer ist als beispielsweise bei $6f \rightleftharpoons 7f$. Inzwischen konnte auch gezeigt werden, daß das Dihydroazulen 6 mit einem 9-Anthrylrest an C-2 zwar photochemisch zum Vinylheptafulven umgelagert werden kann; eine thermische Ringschlußreaktion konnte jedoch nicht beobachtet werden²⁶.

Frau E. Salbeck war maßgeblich an den präparativen Arbeiten beteiligt. Für apparative Unterstützung danken wir: Prof. R. Bonart, Differentialthermoanalyse; Prof. A. Mannschreck und Herrn F. Kastner, chromatographische Racemattrennung; Prof. H. Brunner und Herrn M. Muschiol, CD-Messungen. Die analytischen Untersuchungen wurden in der Zentralen Analytik der Universität Regensburg durchgeführt: Dr. T. Burgemeister (NMR), Dr. K. Mayer (MS), G. Wandinger (Elementaranalyse). Der BASF Aktiengesellschaft, Ludwigshafen, danken wir für eine Chemikalienspende.

Experimenteller Teil

Schmelzpunkte: unkorrigiert. – IR-Spektren: Perkin-Elmer 325 und Beckman Acculab 1. – Elektronenspektren: Beckman Mod. 24 und Shimadzu UV-210 A. – ¹H-NMR-Spektren: Varian T 60, Bruker-Physik WM-250; TMS als interner Standard. – Massenspektren: Varian MAT CH-5 und Varian MAT 311 A. – Differentialthermoanalyse: Mettler TA 2000 (B). – Chromatographie: Für analytische Zwecke Dünnschicht (DC)-Aluminiumfolien der Fa. Merck (Kieselgel 60 F 254, Schichtdicke 0.2 mm). – Säulenchromatographie: Kieselgel Silica WOELM 63–200.

Kristallstrukturanalyse von $6c^{27}$

Kristalldaten: $C_{18}H_{11}BrN_2$, M = 335.2, triklin, Raumgruppe $P\bar{1}$; a = 9.108(2), b = 9.208(1), c = 10.088(Å), $\alpha = 83.53(2)$, $\beta = 64.24(3)$, $\gamma = 74.05(1)^{\circ}$; Z = 2; $d_{\tau} = 1.520 \text{ g} \cdot \text{cm}^{-3}$, $\mu(\text{Mo-}K_{\alpha}) = 27.7 \text{ cm}^{-1}$.

Datensammlung: Maximale Kantenlänge des verwendeten Kristalls: $0.50 \times 0.25 \times 0.20$ mm. Diffraktometer CAD 4 (Enraf-Nonius), monochromatisierte Mo- K_{α} -Strahlung. Im Bereich $2.00 < \Theta < 24.00^{\circ}$ wurden 2158 symmetrieunabhängige Reflexe erhalten ($\Theta/2\Theta$ -Scan, Scanweite ($0.85 + 0.35 \tan \Theta$) [°], Scangeschwindigkeit $1.75 - 5.0^{\circ}$ min⁻¹). Intensitätsverluste während der Messung, die an Hand von drei Kontrollreflexen festgestellt wurden (maximal 0.8%), wurden linear korrigiert. Eine Absorptionskorrektur²⁸) wurde durchgeführt.

Tab. 4. Ortsparameter (× 10⁴ für Schweratome, × 10³ für Wasserstoffatome) und B_{eq} für die Atome im Kristall von 6c. Standardabweichungen stehen in Klammern. $B_{eq} = 4/3 \cdot \Sigma_i \Sigma_j a_i a_j \cdot \beta_{ij}$

Atom	x/a	y/b	2/c	$B_{eq}[\hat{k}^2]$	Atom	x/a	y/b	2/c	Beg[Å ²]
BR	0.34110(7)	0.88640(7)	-0.01060(7)	4.99(2)	C12	0.6371(5)	0.5849(6)	0.1449(5)	3.4(1)
N1	1.0071(5)	0.2515(5)	-0.0036(5)	5.0(1)	C13	0.5930(6)	0.7028(6)	0,0723(5)	3.6(1)
N2	0,9277(5)	0.4850(5)	0.3609(5)	5.3(1)	C14	0.4325(6)	0.7255(6)	0.0861(5)	3.5(1)
C1	0,8135(5)	0.2986(5)	0.2760(5)	2.8(1)	C15	0,3347(4)	0.6301(6)	0.1753(6)	3.9(1)
C2	0.6257(5)	0.3661(5)	0.3153(5)	2.9(1)	C16	0.3989(6)	0.5142(6)	0.2470(6)	3.7(1)
C 3	0.5370(6)	0.2940(5)	0+4346(5)	3.2(1)	H3	0,417(5)	0.322(5)	0.489(4)	4(1)
C3A	0.6399(6)	0.1697(5)	0.4797(5)	3,0(1)	H4	0,491(5)	0.099(5)	0.65R(4)	5(1)
C4	0.5943(6)	0.0770(6)	9.3958(6)	4.1(2)	H5	0.672(5)	-0.089(5)	0.719(5)	6(1)
C5	0.7022(7)	-0.0563(6)	0.6195(6)	4.7(2)	H6	0.876(4)	-0.238(4)	0.544(4)	3(1)
Cé	0.8293(6)	-0.1169(6)	0.5111(6)	4.5(2)	H7	0.921(5)	-0.215(5)	0.307(5)	5(1)
C7	0,8794(6)	-0.1252(6)	0.3568(6)	4.4(2)	ня	0.887(5)	0.020(5)	0.192(4)	4(1)
CB	0.8713(6)	0.0054(6)	0,2878(6)	3.8(1)	HBA	0,899(4)	0.139(4)	0.415(4)	2.5(9)
CBA	0,8202(5)	0.1507(5)	0,3691(5)	3.3(1)	H12	0.754(4)	0.575(4)	0.136(4)	2.5(9)
C9	0+9206(5)	0+2726(5)	0,1170(5)	3.2(1)	H13	0.655(4)	0.771(4)	0,017(4)	3(1)
C10	0.8798(6)	0.4051(5)	0.3230(5)	3.4(1)	H15	0,232(5)	0.644(5)	0.179(4)	4(1)
C11	0,5617(5)	0.4890(5)	9.2356(5)	3.0(1)	H16	0.337(4)	0.448(4)	0.298(4)	3(1)

Tab. 5. Atomkoordinaten und äquivalente, isotrope Temperaturparameter von 7f. Geschätzte Standardabweichungen in Klammern

Atom	x	у	z	B(2)
0	0.0468(4)	0.2821(2)	0.9456(5)	6.0(1)
N 1	0.6436(6)	0.2425(3)	1.1996(6)	5.9(2)
N 2	0.8493(5)	0.0642(3)	1.0655(7)	6.1(2)
С 8	0.4888(6)	0.0461(3)	0.8201(7)	3.5(1)
СS	0.4942(6)	0.1094(3)	0.9107(7)	3.3(1)
C 10	0.6194(6)	0.1314(3)	1.0203(7)	3.4(2)
C 11	0.6320(6)	0.1942(3)	1.1193(7)	3.9(2)
C 12	0.7461(6)	0.0932(3)	1.0447(7)	4.4(2)
C 19	-0.0647(7)	0.2560(4)	1.0032(9)	6.5(2)
C 7	0.3911(5)	0.0189(3)	0.6827(7)	3.4(1)
С1 `	0.2678(7)	0.0567(3)	0.5930(7)	4.5(2)
C 2	0.1642(7)	0.0395(4)	0.4543(7)	5.0(2)
C 3	0.1427(7)	-0.0227(4)	0.3568(8)	6.2(2)
C 4	0.2263(7)	-0.0790(4)	0.3788(8)	5.6(2)
C 5	0.3539(7)	-0.0909(3)	0.4974(7)	4.8(2)
C 6	0.4214(6)	-0.0495(3)	0.6250(7)	4.2(2)
C 13	0.3688(6)	0.1516(3)	0.9047(7)	3.1(1)
C 14	0.2573(6)	0.1236(3)	0,9509(7)	3.9(2)
C 15	0.1453(6)	0.1640(3)	0.9654(7)	4.2(2)
C 16	0.1483(6)	0.2358(3)	0.9318(7)	4.3(2)
C 17	0,2550(6)	0.2658(3)	0.8818(7)	4.4(2)
C 19	0.3638(6)	0.2226(3)	0.8708(7)	4.0(2)

-

Die anisotrop verfeinerten Atome werden in Form des isotropen, äquivalenten Temperaturfaktors angegeben als $\frac{4}{3}[a^2B(1,1) + b^2B(2,2) + c^2B(3,3) + ab(\cos\gamma)B(1,2) + ac(\cos\beta)B(1,3) + bc(\cos\alpha)B(2,3)].$

Strukturlösung und -verfeinerung: Das Phasenproblem wurde mit MULTAN 82 gelöst und die Struktur mit einer Full-matrix-Least-squares-Methode verfeinert. Die H-Atome wurden in einer Differenz-Fourier-Synthese lokalisiert und isotrop verfeinert. Die Verfeinerung für 234 Parameter mit 1778 Reflexen ($I > 2\sigma(I)$) konvergierte bei R = 0.059, $R_w =$ $(\Sigma w \cdot \Delta^2 F / \Sigma w \cdot F_o^2)^{1/2} = 0.048$ ($w = k/(\sigma^2(F_o) + 0.00021 \cdot F_o^2)$; Restelektronendichte 0.64 $e \cdot Å^{-3}$ in der Nähe von Br). Die Lageparameter aller Atome stehen in Tab. 4²⁹).

Kristallstrukturanalyse von 7f²⁷⁾

Kristalldaten: C₁₉H₁₄N₂O, M = 286.34, monoklin, Raumgruppe P₂₁/c, a = 9.992(2), b = 18.981(4), c = 8.398(2) Å, $\beta = 108.45^{\circ}(2)$. V = 1527.6 Å³, Z = 4, $d_r = 1.24$ g/cm³, $\mu = 0.07$ mm⁻¹.

Datensammlung: Verwendet wurden dunkelrote Plättchen (aus Hexan) mit den Abmessungen 0.16 \times 0.22 \times 0.04 mm. Es wurden mit einem automatisierten Vierkreisdiffraktometer CAD 4 (Enraf-Nonius) im Bereich 4° $< 2\Theta < 45^{\circ}$ 2638 Reflexe (Mo- K_{α} , Graphitmonochromator) vermessen, davon 1950 symmetrieunabhängige. Von diesen sind 819 mit $I > 3\sigma(I)$. Nach Lorentz- und Polarisationskorrektur wurden 597 Strukturfaktoren zur Lösung der Struktur verwendet.

Strukturlösung und -verfeinerung: Die Lagen der Nichtwasserstoffatome wurden mit direkten Methoden (MULTAN³⁰) ermittelt und nach der Methode der kleinsten Fehlerquadrate verfeinert. Die Lagen der Wasserstoffatome wurden durch Differenz-Elektronendichtebestimmungen ermittelt. Der anisotrope R_w -Wert beträgt 0.03 (w = 1). Die Lageparameter der Nichtwasserstoffatome sind in Tab. 5 aufgeführt.

Synthesen der Tetrahydroazulene 5: Lit.^{9b)}.

Die Bestrahlungen wurden, falls nicht anders angegeben, mit einer 500-W-Lampe OSRAM HWLS 500 durchgeführt. Alle Arbeitsgänge zur Synthese von 6 wurden unter Lichtausschluß durchgeführt. Die Reinigung und Trocknung der verwendeten Lösungsmittel erfolgte nach den üblichen Verfahren³¹⁾.

Allgemeine Vorschrift für die Synthese der 2-Aryl-1,1(8aH)-azulendicarbonitrile 6: Eine kräftig gerührte Lösung des jeweiligen Tetrahydroazulens 5 in 50 ml wasserfreiem Dichlormethan wird mit 10 g Phosphorpentoxid versetzt und 8 h unter Rückfluß erhitzt. Nach Beendigung der Reaktion wird auf 100 ml verdünnt und durch eine mit wenig CELLITE[®] gefüllte Fritte dekantierend filtriert. Der im Reaktionsgefäß verbleibende Rückstand wird mehrmals mit Dichlormethan ausgewaschen und die Lösung ebenfalls durch die Fritte gegeben. Das Filtrat wird i. Vak. entfernt, man erhält ein gelbes Öl.

2-(4-Nitrophenyl)-1,1(8aH)-azulendicarbonitril (6a): Eingesetzt wurden 195 mg (0.59 mmol) 5a in 15 ml wasserfreiem Dichlormethan und 2.0 g Phosphorpentoxid. Nach 4 h Erhitzen unter Rückfluß wird mit Dichlormethan auf 50 ml verdünnt. Aufarbeitung wie oben angegeben. Rohprodukt 176 mg (100%) 6a, nach ¹H-NMR (60 MHz) einheitlich. Umkristallisation aus Methanol: 141 mg (80%), Schmp. 145–146°C. – IR (KBr): 3100, 3070, 3010, 2930, 2835 (alle w), 1580, 1570, 1505, 1330, 1095, 900, 840, 690 cm⁻¹. – ¹H-NMR (CDCl₃, 250 MHz): δ = 3.84 (m; 1 H, 8a-H), 5.83 (dd, J = 10.3, 3.8 Hz; 1 H, 8-H), 6.35 (m; 1 H, 7-H), 6.56 (m; 3 H, 4- bis 6-H), 7.07 (s; 1 H, 3-H), 7.90 und 8.33 (d, J = 9.2 Hz; 4H, Aromaten-H). – UV/VIS (CH₃CN): λ_{max} (log ε) = 385(4.2), 270(3.9) sh, 235 nm (4.0). – MS (70 eV): m/z = 301 (100%, M⁺), 284 (18, M – OH), 274 (57, M – HCN), 271 (9, M – NO), 255 (40, M – NO₂), 254(67), 253 (29, M – NO, CO), 228(45), 227(55). C₁₈H₁₁N₃O₂ (301.3) Ber. C 71.75 H 3.68 N 13.95 Gef. C 71.84 H 3.66 N 13.84

2640

2-[4-(Methoxycarbonyl)phenyl]-1,1(8aH)-azulendicarbonitril (**6**b): Eingesetzt: 2.65 g (7.65 mmol) **5**b, Reaktionsdurchführung wie bei der allgemeinen Vorschrift angegeben. Chromatographie an Kieselgel/CH₂Cl₂. Ausb. 0.70 g (29%), gelbes Öl. Kristallisation aus Methanol: gelbe Plättchen mit Schmp. 152 °C. – IR (KBr): 3080, 3035, 2960, 2900, 2855, 2250 (C≡N), 1720 (C=O), 1605, 1585, 1430, 1410, 1285, 1195, 1110, 1010, 850, 765, 685 cm⁻¹. – UV/ VIS (CH₃CN): λ_{max} (log ε) = 273 (4.2), 365 nm (4.2). – ¹H-NMR (250 MHz, CDCl₃): δ = 3.81 (mc; 1 H, 8a-H), 3.95 (s; 3 H, CO₂CH₃), 5.82 (dd, J = 10.3 Hz, 3.7 Hz; 1 H, 8-H), 6.33 (ddd, J = 10.2, 5.8, 2.1 Hz; 1 H, 7-H), 6.40 (d, J = 5.9 Hz; 1 H, 4-H), 6.51 (dd, J = 11.2, 5.8 Hz; 1 H, 6-H), 6.59 (dd, J = 11.2, 5.9 Hz; 1 H, 5-H), 6.88 (s; 1 H, 3-H), 7.78–7.82 (m; 2 H, Aromaten-H).

C20H14N2O2 (314.3) Ber. C 76.42 H 4.49 N 8.91 Gef. C 76.23 H 4.59 N 8.98

2-(4-Bromphenyl)-1,1(8aH)-azulendicarbonitril (6c): Eingesetzt: 2.26 g (6.15 mmol) 5c, Chromatographie an Kieselgel/CH₂Cl₂: Petrolether (40−60 °C) (1:1), Elution der breiten, gelben Zone ergibt 1.16 g (56%) 6c als hellgelben Feststoff. Kristallisation aus Methanol: gelbe Kristalle, Schmp. 151 °C. – IR (KBr): 3070, 3025, 2255 (C=N), 1585, 1490, 1400, 1380, 1070, 1005, 900, 820, 760, 710 cm⁻¹. – UV/VIS (CH₃CN): λ_{max} (log ε) = 270(4.1), 358 nm (4.1). – ¹H-NMR (250 MHz, CDCl₃): δ = 3.78 (mc; 1 H, 8a-H), 5.81 (dd, J = 10.2, 3.8 Hz; 1 H, 8-H), 6.27 – 6.37 (m; 2 H, 4-, 7-H), 6.49 (dd, J = 11.1, 5.8 Hz; 1 H, 6-H), 6.57 (dd, J = 11.1, 6.0 Hz; 1 H, 5-H), 6.88 (s; 1 H, 3-H), 7.60 (s; 4 H, Aromaten-H). – MS (70 eV): m/z = 334/336 (84%/86%, M⁺), 307/309 (34/35, M – HCN), 255 (100, M – Br), 228 (34, M – HCN, Br), 227 (34, M – HCN, HBr).

C18H11BrN2 (335.2) Ber. C 64.50 H 3.31 N 8.36 Gef. C 64.29 H 3.44 N 8.35

2-Phenyl-1,1(8aH)-azulendicarbonitril (6d): Eingesetzt: 1.01 g (3.50 mmol) 5d, Chromatographie an Kieselgel/CH₂Cl₂ ergibt 0.76 g (85%) 6d als gelbes Öl. Kristallisation aus Methanol: gelbe Mikrokristalle mit Schmp. 128 °C. – IR (KBr): 3085, 3020, 2250 (C \equiv N), 1490, 1440, 1375, 1180, 890, 760, 750, 700, 680 cm⁻¹. – UV/VIS (CH₃CN): λ_{max} (log ε): 237 sh, 265(4.2), 354 nm (4.1). – ¹H-NMR (250 MHz, CDCl₃): δ = 3.79 (mc; 1H, 8a-H), 5.82 (dd, J = 10.3, 3.8 Hz; 1 H, 8-H), 6.27–6.35 (m; 2H, 4-, 7-H), 6.47 (dd, J = 11.0, 5.8 Hz; 1 H, 6-H), 6.57 (ddd, J = 11.0, 5.9, 0.9 Hz; 1 H, 5-H), 6.88 (s; 1 H, 3-H), 7.41–7.51 (m; 3 H, Aromaten-H), 7.71–7.76 (m; 2H, Aromaten-H).

C₁₈H₁₂N₂ (256.3) Ber. C 84.35 H 4.72 N 10.93 Gef. C 84.38 H 4.75 N 10.91

2-(4-Methylphenyl)-1,1(8aH)-azulendicarbonitril (6e): Eingesetzt: 2.05 g (6.78 mmol) 5e, Chromatographie an Kieselgel/CH₂Cl₂: Petrolether (40-60 °C) (1:1) ergibt 0.81 g (44%) 6e als hellgelben Feststoff; Kristallisation aus Methanol: gelbe Kristalle mit Schmp. 151 °C. – IR (KBr): 3030, 2925, 2880, 2245 (C=N), 1605, 1505, 1380, 1185, 900, 890, 805, 750, 690 cm⁻¹. – UV/VIS (CH₃CN): λ_{max} (log ε) = 212(4.2), 237(4.0), 268(4.3), 355 nm (4.3). – ¹H-NMR (250 MHz, CDCl₃): δ = 2.40 (s; 3H, CH₃), 3.77 (mc; 1H, 8a-H), 5.81 (dd, J = 10.2, 3.8 Hz; 1H, 8-H), 6.25 – 6.33 (m; 2H, 4-, 7-H), 6.45 (dd, J = 11.2, 6.0 Hz; 1H, 6-H), 6.56 (dd, J = 11.2, 6.2 Hz; 1H, 5-H), 6.83 (s; 1H, 3-H), 7.25 – 7.29 (m; 2H, Aromaten-H), 7.62 – 7.65 (m; 2H, Aromaten-H).

C₁₉H₁₄N₂ (270.3) Ber. C 84.42 H 5.22 N 10.36 Gef. C 84.01 H 5.33 N 10.43

2-(4-Methoxyphenyl)-1,1(8aH)-azulendicarbonitril (6f): 1.00 g (3.14 mmol) 5f werden zusammen mit ca. 10 g Phosphorpentoxid in wasserfreiem Dichlormethan zum Sieden erhitzt. Nach Beendigung der Reaktion (4 h) wird auf 250 ml verdünnt und durch eine dünne Schicht Kieselgel filtriert. Nach Entfernen des Lösungsmittels i. Vak. verbleiben 760 mg (85%) 6f, orangefarbener Feststoff. Umkristallisation aus Methanol ergibt zitronengelbe Kristalle vom Schmp. 125-126°C. – IR (KBr): 2845, 1605, 1585, 1510, 1460 cm⁻¹. – UV/VIS (CH₃CN):

 λ_{max} (log ε) = 365(4.4), 275(4.2), 220 nm (4.2). - ¹H-NMR (250 MHz, CDCl₃): δ = 3.77 (m; 1 H, 8a-H), 3.86 (s; 3 H, OCH₃), 5.81 (dd, J = 10.3, 3.8 Hz; 1 H, 8-H), 6.29 (m; 2 H, 4-, 7-H), 6.44 (dd, J = 10.5, 6.0 Hz; 1 H, 6-H), 6.55 (ddt, J = 10.5, 6.3, 0.8 Hz; 1 H, 5-H), 6.76 (s; 1 H, 3-H), 6.99 und 7.67 (d, J = 9.1 Hz, 4 H, Aromaten-H). - MS (70 eV): m/z = 286 (100%, M⁺), 271 (21, M - CH₃), 260 (9, M - CN), 259 (16, M - HCN), 244(14), 221 (9), 178(10).

C₁₉H₁₄N₂O (286.3) Ber. C 79.70 H 4.93 N 9.78 Gef. C 79.33 H 4.92 N 9.76

2-[4-(Dimethylamino)phenyl]-1,1(8aH)-azulendicarbonitril (6g): Eingesetzt: 470 mg (1.4 mmol) 5g; Chromatographie: zweimal an Kieselgel/CH₂Cl₂; Kristallisation aus Methanol ergibt 8.5 mg (2%) orangegelbe Kristalle mit Schmp. 158 °C. – UV/VIS (CH₃CN): λ_{max} (log ε) = 234, 290 sh, 406 nm (4.5). – ¹H-NMR (250 MHz, CDCl₃): δ = 3.04 (s; 6H, N(CH₃)₂), 3.76 (mc; 1H, 8a-H), 5.81 (dd, J = 10.0, 3.8 Hz; 1H, 8-H), 6.22 (d, J = 6.4 Hz; 1H, 4-H), 6.28 (ddd, J = 10.0, 6.1, 2.1 Hz; 1H, 7-H), 6.38 (dd, J = 11.1, 6.1 Hz; 1H, 6-H), 6.54 (dd, J = 11.1, 6.4 Hz; 1H, 5-H), 6.66 (s; 1H, 3-H), 6.71–6.77 (m; 2H, Aromaten-H), 7.59–7.65 (m; 2H, Aromaten-H).

C₂₀H₁₇N₃ Ber. 298.13442 Gef. 298.13367 (MS)

[2-(2,4,6-Cycloheptatrien-1-yliden)-1-(4-nitrophenyl)ethyliden]propandinitril (7a): Eine gesättigte Lösung von analysenreinem **6a** in n-Hexan (ca. 10 mg/250 ml) wird im direkten Sonnenlicht bei Raumtemp. stehengelassen. Die gelbe Lösung nimmt eine orangerote Farbe an, und nach einigen min beginnen sich Kristallnadeln abzuscheiden. Nach 1 h werden diese abgesaugt und mit n-Hexan gewaschen. Man erhält feine, grünschillernde Nadeln von **7a**, die sich in polaren Lösungsmitteln tiefdunkelrot lösen. Aus der eingeengten Mutterlauge kann durch wiederholte Bestrahlung weiteres **7a** gewonnen werden. Schmp. 115–116°C unter Umwandlung in **6a** (Schmp. 145–146°C). – IR (KBr): 3115, 3080, 2220 s (C=N), 1630 w, 1500 vs, 1460 s, 1440 m, 1340 s, 1250 s, 1210 m, 1115 brw, 1010 vw, 830 m, 740 m cm⁻¹. – UV/VIS (CH₃CN): λ_{max} (log ε) = 483 nm (4.45). – ¹H-NMR (250 MHz, CDCl₃): $\delta = 5.82$ (dd, J = 12.5, 2.5 Hz; 1 H, 6-H), 6.02 (dd, J = 12.0, 7.7 Hz; 1 H, 5-H), 6.35–6.59 (m; 3H, 2- bis 4-H), 6.38 (s; 1 H, 8-H), 6.79 (mc; 1 H, 1-H), 7.60 (AA'-Teil eines AA'XX'-Systems, $J_{AX} + J_{AX'} = 8.8$ Hz; 2 H, Aromaten-H).

[2-(2,4,6-Cycloheptatrien-1-yliden)-1-[4-(methoxycarbonyl)phenyl]ethyliden]propandinitril (7b): Herstellung und Isolierung analog 7a; Schmp. 108 °C unter unvollständiger Umwandlung in 6b (Schmp. 152 °C). – IR (KBr): 2960, 2200 vs (C = N), 1720 s (C = O), 1620 w, 1495 vs, 1460 s, 1430 m, 1335 s, 1245 s, 1205 m, 1115 brw, 1010 vw, 825 m cm⁻¹. – UV/ VIS (CH₃CN): λ_{max} (log ε) = 235, 476 nm (4.4). – ¹H-NMR (250 MHz, CDCl₃): δ = 3.96 (s; 3H, CO₂CH₃), 5.82 (d, J = 12.0 Hz; 1H, 6-H), 5.92 (dd, J = 12.0, 7.4 Hz; 1H, 5-H), 6.30–6.48 (m; 3H, 2- bis 4-H), 6.35 (s; 1H, 8-H), 6.74 (mc; 1H, 1-H), 7.45–7.49 (m; 2H, Aromaten-H), 8.12–8.18 (m; 2H, Aromaten-H).

[1-(4-Bromphenyl)-2-(2,4,6-cycloheptatrien-1-yliden)ethyliden]propandinitril (7c): Die Lösung von 150 mg 6c in 500 ml Chloroform wird 90 min bei 20°C bestrahlt (Lampe OSRAM HWLS 500 Watt). Das Lösungsmittel wird bei 40°C unter Bestrahlung abgezogen und das verbleibende rote Öl sofort an Kieselgel chromatographiert. Mit Dichlormethan/ Petrolether (40-60°C) (1:1) läuft zunächst eine blaßgelbe Zone von nicht umgesetztem 6c, danach wird das langsamer wandernde, intensiv rote 7c mit reinem Dichlormethan eluiert und sofort bei höchstens 30°C unter fortwährender Bestrahlung i. Vak. vom Lösungsmittel befreit. Das dunkelrote Öl kristallisiert aus Diethylether. Ausb. 88 mg (59%) 7c, dunkelrote Plättchen mit Schmp. 132°C unter Umwandlung in festes 6c (Schmp. 151°C). – IR (KBr): 3095, 3070, 3040, 2975, 2220 vs (C=N), 1630 w, 1590 w, 1510 vs, 1470 s, 1440 m, 1345 s, 1255 s, 1210 m, 1120 w, 1070 m, 1010 m, 830 s, 735 m cm⁻¹. – UV/VIS (CH₃CN): λ_{max} (log ε) = 474 nm (4.3), siehe auch Tab. 2. – ¹H-NMR (250 MHz, CDCl₃): δ = 5.90 (d, J = 12.0 Hz; 1H, 6-H), 6.00 (dd, J = 12.0, 7.3 Hz; 1H, 5-H), 6.30–6.47 (m; 3H, 2- bis 4-H), 6.31 (s; 1H, 8-H), 6.71 (mc; 1H, 1-H), 7.26–7.31 (m; 2H, Aromaten-H), 7.60–7.65 (m; 2H, Aromaten-H).

[2-(2,4,6-Cycloheptatrien-1-yliden)-1-phenylethyliden]propandinitril (7d): Reaktionsdurchführung analog 7c. Eine versuchte Kristallisation aus Tetrachlormethan/Petrolether (40-60°C) ergab mit kristallisiertem 6d verklumpte rote Kristalle. Schmp.: beim Aufheizen bis 100°C völlige Umwandlung in 6d (Gelbfärbung der Kristalle); Schmp. 6d: 128°C. – UV (CH₃CN) einer bestrahlten Lösung von 6d: λ_{max} (log ε) = 254 sh, 298 sh, 471 nm (4.4). – ¹H-NMR (250 MHz, bestrahlte Lösung von 6d in CDCl₃): δ = 5.84–5.93 (m; 2H, 5-, 6-H), 6.23–6.43 (m; 3H, 2- bis 4-H), 6.33 (s; 1H, 8-H), 6.70 (mc; 1H, 1-H), 7.36–7.51 (m; 5H, Aromaten-H).

[2-(2,4,6-Cycloheptatrien-1-yliden)-1-(4-methylphenyl)ethyliden]propandinitril (7 e): Reaktionsdurchführung analog **6a**. Eingesetzt wurden 15.5 mg **6e**, Ausb. 11 mg (70%), grünschillernde, dunkelrote Kristallplättchen mit Schmp. 135°C unter Umwandlung in festes **6e** (Schmp. 151°C). – Differentialthermoanalyse: Abb. 2. – IR (KBr): 3035, 2925, 2860, 2210 s (C \equiv N), 1630 w, 1510 vs, 1465 s, 1435 m, 1370 m, 1340 s, 1250 s, 1210 m, 1105 brw, 1010 vw, 825 s, 735 cm⁻¹. – UV/VIS (CH₃CN): λ_{max} (log ε) = 469(4.4), 344(3.7), 302 nm (3.8). – ¹H-NMR (250 MHz, CDCl₃; bestrahlte Lösung von **6e**): δ = 2.41 (s; 1 H, CH₃), 5.88–5.91 (m; 2H, 5-, 6-H), 6.23–6.40 (m; 3H, 2- bis 4-H), 6.30 (s; 1 H, 8-H), 6.55–6.70 (m; 1 H, 1-H), 7.28 (mc; 4 H, Aromaten-H).

Abb. 2. Differential thermoanalyse $7e \rightarrow 6e$

[2-(2,4,6-Cycloheptatrien-1-yliden)-1-(4-methoxyphenyl)ethyliden]propandinitril (7f): Reaktionsdurchführung analog 7c, eingesetzt: 90 mg (0.3 mmol) 6f in 400 ml Chloroform, Chromatographie an Kieselgel/CH₂Cl₂, nach Kristallisation aus Ether werden 62.5 mg (69%) 7f als dunkelrote Kristalle erhalten, Schmp. 116°C ohne Umwandlung; beim Ab-

kühlen kristallisiert **6f** aus. – IR (KBr): 3035, 2945, 2855, 2210 s ($C \equiv N$), 1630 w, 1605 m, 1510 vs, 1465 s, 1430 w, 1340 s, 1250 s, 1210 w, 1175 m, 1110 brw, 1025 m, 835 m cm⁻¹. – UV/VIS (CH₃CN): λ_{max} (log ε) = 237(4.2), 467 nm (4.5). – ¹H-NMR (250 MHz, CDCl₃): δ = 3.87 (s; 3 H, OCH₃), 5.94, 6.30, 6.70 (m; 6 H, Fulven-H), 6.27 (s; 1 H, 8-H), 6.97 und 7.38 (d, J = 9.0 Hz; 4H, Aryl-H). – ¹H-NMR (250 MHz, [D₆]Benzol): δ = 3.14 (s; 3 H, OCH₃), 5.13 (ddm, J = 12.0, 7.4 Hz; 1 H, 5-H), 5.39–5.59 (m; 3 H, 2- bis 4-H), 5.59 (dm, J = 12.0 Hz; 1 H, 6-H), 5.78 (dm, $J \approx$ 10 Hz; 1-H), 6.06 (s; 1 H, 8-H), 6.52–6.58 (m; 2 H, Aromaten-H), 6.95–7.01 (m; 2 H, Aromaten-H).

[2-(2,4,6-Cycloheptatrien-1-yliden)-1-[4-(dimethylamino)phenyl]ethyliden]propandinitril (7g) wird durch Bestrahlung von **6g** in Acetonitril hergestellt. – UV/VIS (CH₃CN): λ_{max} (log ε) = 284, 460 nm (4.5). – ¹H-NMR (250 MHz, CDCl₃): δ = 3.06 (s; 6H, N(CH₃)₂), 5.88 (dd, J = 12.0, 7.1 Hz; 1H, 5-H), 6.02 (d, J = 12.0 Hz, 1H, 6-H), 6.13-6.30 (m; 3H, 2- bis 4-H), 6.17 (s; 1H, 8-H), 6.58 (mc; 1H, 1-H), 6.65-6.70 (m; 2H, Aromaten-H), 7.37-7.43 (m; 2H, Aromaten-H).

Herstellung von [1-(4-Aminophenyl)-2-(2,4,6-cycloheptatrien-1-yliden)ethyliden]propandinitril (7h)

a) 2-(4-Aminophenyl)-1,1(8aH)-azulendicarbonitril (6h): Die Lösung von 400 mg 6a in 50 ml Ethanol wird mit einer 10proz. wäßrigen Eisen(II)-sulfat-Lösung versetzt und zum Sieden erhitzt; 10 ml halbkonz. Ammoniaklösung werden zugegeben und 10 min wird knapp unter dem Siedepunkt gerührt. Die abgekühlte Lösung wird mit 350 ml Ether ausgeschüttelt (50-ml-Portionen), die Etherphasen werden mit MgSO₄ getrocknet und i. Vak. vom Lösungsmittel befreit. Zweimalige Chromatographie an Kieselgel/CH₂Cl₂ zur Abtrennung eines gelben Nebenprodukts ergibt 240 mg (60%) orangeroten Feststoff 6h; das Nebenprodukt zeigt ein ähnliches Laufverhalten und kann nicht vollständig entfernt werden. Zur Ermittlung der spektroskopischen Daten wurde 6h photochemisch in 7h umgewandelt, dieses wurde chromatographisch gereinigt und dann thermisch wiederum in 6h übergeführt. – UV/VIS (CH₃CN): λ_{max} (log ε) = 228, 284, 388 nm (4.4). – ¹H-NMR (250 MHz): δ = 3.76 (mc; 1 H, 8a-H), 3.99 (brs; 2 H, NH₂), 5.80 (dd, J = 10.1, 3.7 Hz; 1 H, 8-H), 6.23–6.31 (m; 2 H, 4-, 7-H), 6.40 (dd, J = 11.1, 6.0 Hz; 1 H, 6-H), 6.54 (dd, J = 11.1, 6.4 Hz; 1 H, 5-H), 6.53–6.57 (m; 2 H, Aromaten-H), 6.68 (s; 1 H, 3-H), 6.69–6.74 (m; 2 H, Aromaten-H).

6h: C₁₈H₁₂N₃ Ber. 270.10312 Gef. 270.10250 (MS)

b) Dinitril 7h: 200 mg 6h werden in 250 ml Dichlormethan 1 h bestrahlt, unter Bestrahlung i. Vak. eingeengt (T < 40 °C) und an Kieselgel/CH₂Cl₂ chromatographiert. Die langsam laufende tiefdunkelrote Zone ergibt 30 mg (15%) dunkelrotes Öl, das aus Tetrachlormethan kristallisiert. Schmelzverhalten: bis ca. 140 °C Umwandlung in 6h (hellgelber Feststoff), ohne zu schmelzen; Schmp. von 6h 188 – 189 °C. – IR (KBr): \approx 3470, 3380 (NH), 3040, 2930, 2860, 2210 s (C \equiv N), 1630 s, 1600 s, 1510 s, 1460 s, 1430 m, 1335 s, 1250 s, 1210 w, 1175 m, 1110 w, 830 s, 730 m cm⁻¹. – UV/VIS (CH₃CN): λ_{max} (log ε) = 258, 456 nm (4.5). – ¹H-NMR (250 MHz, CDCl₃): δ = 4.08 (brs; 2H, NH₂), 5.91 (dd, J = 12.1, 7.0 Hz; 1H, 5-H), 6.03 (d, J = 12.1 Hz; 1H, 6-H), 6.19–6.32 (m; 3H, 2- bis 4-H), 6.21 (s; 1H, 8-H), 6.62 (mc; 1H, 1-H), 6.67–6.70 (m; 2H, Aromaten-H), 6.27–7.31 (m; 2H, Aromaten-H).

CAS-Registry-Nummern

5a: 94111-24-7 / 5b: 102780-17-6 / 5c: 102780-18-7 / 5d: 102780-19-8 / 5e: 102780-20-1 / 5f: 94111-23-6 / 5g: 102780-21-2 / 6a: 94111-20-3 / 6b: 102780-11-0 / 6c: 102780-12-1 / 6d: 102780-13-2 / 6e: 102780-14-3 / 6f: 102780-15-4 / (±)-6f: 94111-19-0 / 6g: 102780-16-5 / 6h: 102780-27-8 / 7a: 94111-22-5 / 7b: 102780-22-3 / 7c: 102780-23-4 / 7d: 102780-24-5 / 7e: 102780-25-6 / 7f: 94111-21-4 / 7g: 102780-26-7 / 7h: 102780-28-9

- ¹⁾ J. Daub, T. Knöchel und A. Mannschreck, Angew. Chem. 96, 980 (1984); Angew. Chem., Int. Ed. Engl. 23, 960 (1984).
- ^{2) 2a)} R. Takeda und K. Katoh, J. Am. Chem. Soc. 105, 4056 (1983). ^{2b)} D. Meuche und S. Huneck, Chem. Ber. 102, 2493 (1969).
- ³⁾ Über die Bestimmung der absoluten Konfiguration von 2 siehe N. Harada, J. Kohori, H. Uda, K. Nakanishi und R. Takeda, J. Am. Chem. Soc. 107, 423 (1985)
- ⁴⁾ Siehe auch ^{4a)} K. Takahashi, N. Hirata, und K. Takase, Tetrahedron Lett. 1970, 1285. –
 ^{4b)} E. M. Arnett und K. E. Molter, Acc. Chem. Res. 18, 339 (1985).
- ⁵⁾ W. Bauer, I. Betz, J. Daub, L. Jakob, W. Pickl und K. M. Rapp, Chem. Ber. 116, 1154 (1983).
- ⁶⁾ Übersicht über Heptafulvene: ^{6a)} T. Asao und M. Oda in Methoden der organischen Chemie (Houben-Weyl, Herausg. H. Kropf), 4. Aufl., Bd. V/2c, S. 768, Thieme, Stuttgart 1985. – ^{6b)} D. J. Bertelli, Top. Nonbenzenoid Aromat. Chem. 1, 29 (1973). – ^{6c)} D. Lloyd, Stud. Org. Chem. 16: Nonbenzenoid Conjugated Carbocyclic Compounds, Elsevier, Amsterdam 1984. – ^{6d)} F. Pietra, Chem. Rev. 73, 294 (1973). – ^{6e)} E. D. Bergmann, Chem. Rev. 68, 41 (1968).
- Kev. 08, 41 (1900).
 ⁷¹ Übersicht Photochromie: ^{7a} G. H. Brown (Herausg.), Photochromism, in Techniques of Chemistry (A. Weissberger), Bd. 3, Wiley-Interscience, N. Y. 1971. ^{6b} E. Fischer, Chem. Unserer Zeit 9, 85 (1975). ^{6c} Siehe auch G. Kämpf, Ber. Bunsenges. Phys. Chem. 89, 1179 (1985), und dort zitierte Literatur. Ausschnitte aus ^{8a)} Dissertation *T. Knöchel*, Universität Regensburg 1985. –
- ^{8b)} Diplomarbeit S. Gierisch, Universität Regensburg 1985.
 ⁹⁾ Über die Darstellung von 5 siehe ^{9a)} A. Bäumler, J. Daub, W. Pickl und W. Rieger, Chem. Ber. 118, 1857 (1985). ^{9b)} J. Daub, S. Gierisch, T. Knöchel, E. Salbeck und G. Maas, Z. Naturforsch., im Druck.
- ¹⁰⁾ Definition von α und β siehe Lit.^{9b)} und ¹¹⁾.
- ¹¹⁾ J. Daub, G. Hirmer, L. Jakob, G. Maas, W. Pickl, E. Pirzer und K. M. Rapp, Chem. Ber. 118, 1836 (1985).
- ¹²⁾ Siehe auch J. C. van de Grampel, A. J. Cuperus und Aafje Vos, Rec. Trav. Chim. Pays-Bas 90, 587 (1971).
- ¹³⁾ E. M. Arnett, E. B. Troughton, A. T. Mc Phail und K. E. Molter, J. Am. Chem. Soc. 105, 6172 (1983).
- Verbindungen durch Kristallstrukturanalyse und Mikrowellenspektroskopie siehe auch ^(4b) C. Kabuto, M. Oda und Y. Kitahara, Tetrahedron Lett. **1972**, 4851. – ^(14c) R. Thomas und P. Coppens, Acta Crystallogr., Sect. B **28**, 1800 (1972). – ^(14d) H. Shimanouchi, Y. ¹⁴⁰ J. Source Crystallogr., Sect. B 28, 1800 (1972). — ¹⁴⁰ H. Shimahouchi, F. Sasada, C. Kabuto und Y. Kitahara, Acta Crystallogr., Sect. B 30, 1267, 1273 (1974). — ¹⁴⁰ A. Bauder, C. Keller und M. Neuenschwander, J. Mol. Spectrosc. 63, 281 (1976). — ¹⁴⁰ W. Bauer, T. Laube und D. Seebach, Chem. Ber. 118, 764 (1985). — ^{14g} C. Reichardt, Kyeong-Yeol Yun, W. Massa, R. E. Schmidt, O. Exner und E. U. Würthwein, Liebigs Ann. Chem. 1985, 1997. — ^{14h} W. Henslee und R. E. Davis, Acta Crystallogr., Sect. B 30, 1267 (1974).
- (1974).
 ¹⁵ Dihydroazulene: ^{15a)} P. G. Gassman und T. Nakai, J. Am. Chem. Soc. **93**, 5897 (1971). ^{15b)} S. Kuroda, T. Asao, M. Funamizu, H. Kurihara und Y. Kitahara, Tetrahedron Lett. **1976**, 251. ^{15c)} T. Toda, K. Saito und T. Mukai, Tetrahedron Lett. **1972**, 1981. ^{15d)} H. Prinzbach und H. J. Herr, Angew. Chem. **84**, 117, (1972); Angew. Chem., Int. Ed. Engl. **11**, 135 (1972). ^{15e)} H. Prinzbach, H. J. Herr und W. Regel, Angew. Chem. **84**, 113 (1972); Angew. Chem., Int. Ed. Engl. **11**, 135 (1972). ^{15e)} H. Prinzbach, H. J. Herr und W. Regel, Angew. Chem. **84**, 113 (1972); Angew. Chem., Int. Ed. Engl. **11**, 131 (1972).
 ¹⁶ D. J. Bertelli, C. Golino und D. L. Dreyer, J. Am. Chem. Soc. **86**, 3329 (1964).
 ¹⁷⁾ W. K. Schenk, R. Kyburz und M. Neuenschwander, Helv. Chim. Acta **58**, 1099 (1975).
 ¹⁸⁾ H. Tsuruta, T. Sugiyama und T. Mukai, Chem. Lett. **1972**, 185.
 ¹⁹ D. J. Bertelli, T. G. Andrews jr. und P. O. Crews, J. Am. Chem. Soc. **91**, 5286 (1969).
 ²⁰ T. Mukai, H. Tsuruta und T. Sugiyama, Japan. Kokai 73 103.559 (Cl. 16 D 43), 25. Dec. 1973, Appl. 72 35.016, 07. Apr. 1972 [Chem. Abstr. **80**, P 82505g (1974)].

- 1973, Appl. 72 35.016, 07. Apr. 1972 [Chem. Abstr. 80, P 82505g (1974)].
- ²¹⁾ C. Jutz, Chem. Ber. 97, 2050 (1964).
- ²²⁾ Vgl. C. Reichardt, Solvent Effects in Organic Chemistry, S. 189, Verlag Chemie, Weinheim, New York 1979.
- ²³⁾ A. Mannschreck, H. Koller und R. Wernicke, Kontakte (Merck) 1985, 40.
- ²⁴ Über vergleichbare thermische Rückreaktionen: ^{24a} D. J. Bertelli, P. O. Crews und S. Griffin, Tetrahedron 24, 1945 (1968). ^{24b} K. Komatsu, S. Tanaka, S. Saito, und K.

Okamoto, Bull. Chem. Soc. Jpn. 50, 3425 (1977). $-{}^{24c)}$ Lit. ${}^{14d)}$. $-{}^{24e)}$ Lit. ${}^{15d)}$. $-{}^{24e)}$ Lit. 18 . $-{}^{24g)}$ H. Prinzbach und L. Knothe, Pure Appl. Chem. 58, 25 (1986).

- ²⁵⁾ Weitere verwandte photochrome Systeme mit Sechs- und Zehnelektronen-Umlagerungen: a) Spiropyrane: R. Heiligman-Rim, T. Bercovici und E. Fischer, Mol. Photochem. 1, 23, 189 (1969). b) 1,8a-Dihydroindolizine: G. Hauck und H. Dürr, Angew. Chem. 91, 1010 (1979); Angew. Chem., Int. Ed. Engl. 18, 945 (1979); P. Spang und H. Dürr, Angew. Chem. 96, 227 (1984); Angew. Chem., Int. Ed. Engl., 23, 241 (1984). c) Dihydroxanthenone: K. R. Huffman, M. Loy, W. A. Henderson jr. und E. F. Ullman, J. Org. Chem. 33, 3469 (1968). d) Fulgide: P. J. Darcy, R. J. Hart und H. G. Heller, J. Chem. Soc., Perkin Trans 1 1978, 571.
- ²⁶⁾ Dissertation S. Gierisch, in Planung.
- ²⁷⁾ Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummern CSD 51876 und CSD 51822, der Autoren und des Zeitschriftenzitats angefordert werden.
- ²⁸⁾ N. Walker und D. Stuart, Acta Crystallogr., Sect. A 39, 158 (1983).
- ²⁹⁾ Alle Rechnungen wurden mit dem Structure Determination Package von Enraf-Nonius (Delft, Holland) durchgeführt.
- ³⁰⁾ S. J. Fiske, S. É. Hull, L. Lessinger, G. Germain, J. P. Declerq und M. M. Woolfson, Univ. York (England) und Univ. Louvain (Belgien) – MULTAN 82 von P. Main, Univ. York (England).
- ³¹⁾ Organikum, 15. Aufl., VEB Deutscher Verlag für Wissenschaften Berlin 1976.

[40/86]